
4
February 2015

I first started working with database technology in the mid-
1980s. A lot has changed in database technology over those
30 years, but I would have to say that there have been more
fundamental changes in databases over the past five years

than in the 25 years preceding. I think these changes can be
boiled down to a few key trends that are revolutionizing the
databases of today and the future. Those trends include:

➤	 The end of the era in which a single type of database tech­
nology—the relational database—served as a one-size-
fits-all-solution.

➤	 The emergence of big data technologies, most significant­
ly Hadoop.

➤	 The explosion of non-relational operational databases
(aka NoSQL) such as Cassandra and MongoDB.

➤	 The increasing capacity to store data in columnar rather
than row-oriented format.

➤	 The diminishment of the spinning magnetic disk as the
only viable technology for persistently storing data.

Trend #1: The End of Relational Hegemony
Database technology arguably predates digital computing:

Many of IBMs first “business machines” were tabulators—which
were able to summarize and analyze data held on punched cards.
These punched cards arguably represented a paper database.
However, what we think of as computer databases emerged from
the combination of digital computing and persistent storage
media such as magnetic disks and tape.

The first digital databases—circa 1950—were based on se­
quential files that would be scanned into memory on every ac­
cess. However, during the 1960s, true database management
systems emerged that combined indexed access methods and
structured schemas. By the end of the 1960s, the hierarchical and
network database models were established and pervasive.

Edgar Codd first defined A Relational Model of Data for Large
Shared Data Banks in 1970. The relational model had several
advantages over the existing models: most significantly it sup­
ported the concept of ad-hoc queries in which the data model
was not required to anticipate all of the possible queries that
might be supported. The relational model also required an inter­
active query language—eventually standardized on SQL—that
allowed non-programmers to execute query operations. This
interactive query language broke the logjam of report writing
that plagued IT departments of the time and was a major factor

in the rapid uptake of Relational Database Management Systems
(RDBMS).

From the first release of Oracle in 1978 to the middle of the
2000s, virtually every significant database released was either
relational or claimed to be relational. The database timeline in
Figure 1 shows that virtually every database released from 1980
to 2000 was—or at least claimed to be—a relational database.

Figure 1. Database timeline

While some non-relational systems—Object-Oriented Data­
base Management Systems (OODBMSs) and XML databases—
were developed, none gained significant traction during this
period. For an entire generation of software professional, the
RDBMS reigned supreme.

The First Cracks Appear
The end of the relational hegemony had been foretold since the

middle of the last decade, most significantly by relational database
pioneer Mike Stonebraker, whose 2005 paper “One Size Fits All”:
An Idea Whose Time Has Come and Gone argued that modern
applications would be better served by a mix of database systems
optimized for specific workloads. At the time, the proposed “new
models” of DBMS were largely theoretical. However, Stonebraker
correctly identified the key trend: the complete dominance (though
not primary role) of the relational database was about to end.

As we can see from the timeline in Figure 1, between 2005
and 2014 literally dozens of new databases were released—al­
most none of which were fully relational.

The Third Platform
There are many factors behind the end of the relational su­

premacy, but at a high level, it is a result of the paradigm shifts in

specia l
f eature

Five Database
Technology Trends

with Guy Harrison
Guy Harrison

Magnetic tape

“flat” (sequential) files

Pre-computer
technologies:

Printing press
Dewey
decimal
system
Punched cards

Magnetic Disk

IMS

Relational
Model
defined

Indexed-Sequential
Access Mechanism
(ISAM)

Network Model

IDMS

ADABAS

System R

Oracle V2

Ingres

dBase

DB2

Informix

Sybase

SQL Server

Access

Postgres

MySQL

Cassandra

Hadoop

Vertica

Riak

HBase

Dynamo

MongoDB

Redis

VoltDB

Hana

Neo4J

Aerospike

Hierarchical model

1960-70 1940-50 1950-60 1970-80 1980-90 1990-2000

2000-2010

Relational Era

Non relational Era

Pre Relational Era

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://cs.brown.edu/~ugur/fits_all.pdf
http://cs.brown.edu/~ugur/fits_all.pdf

5
The NoCOUG Journal

software application architecture. We’ve seen any number of
paradigm shifts within the last three decades, including micro­
computer to minicomputer and the introduction of the Internet.
However, arguably all of the things we’ve seen fall into three
major waves of application architecture.

IDC coined the term “the third platform” to describe the cur­
rent application landscape and contrast it to what has come be­
fore. In IDC’s widely accepted model, software applications have
undergone three fundamental changes:

Figure 2. The third platform (source: IDC)

➤	 The first platform was based on mainframe systems ac­
cessed through “dumb” terminals. All processing logic was
centralized. These systems typically supported only hun­
dreds of users, although millions of users in aggregate ac­
cessed this category of applications.

➤	 The second platform emerged with the client server model
and early web applications. These applications divided ap­
plication logic into two or more tiers (one of which was
typically the database). As the Internet became a universal
WAN, these applications entered the realm of the main­
stream consumer and attracted hundreds of millions of
users.

➤	 The third platform emerged from the nexus of megatrends
that we’ve all experienced over the past 10 years: smart­
phones, social networking applications, and cloud com­
puting have combined to revolutionize not just application
architecture but digital lifestyles and our very societies.
Big Data was arguably born out of the third platform but
also strongly influenced its growth. The increasing data
generated by our mobile and social interactions creates
new avenues for user experience that in turn generate
more data. The increasing prevalence of Internet-connected
sensors—the Internet of Things (IoT)—further accelerates
the paradigm shift.

A New Database World Order
Databases supporting the third platform need to deal with

availability, throughput, and performance requirements that
were simply not in existence when the RDBMS was conceived.
The demands on databases have included some of the following
pressures:

➤	 Global availability

➤	 Unstructured data and rapidly changing schemas

➤	 Massive volumes—data volumes had been increasing
steadily since the genesis of the database, but new signifi­
cant pressure arose to store large amounts of unstructured
data at prices far lower than were possible with a rela­
tional schema.

➤	 Diverging storage technologies that for the first time cre­
ated an increasing divergence between the price of storing
data and the price of accessing data. Solid-state disk tech­
nologies and in-memory database options became avail­
able, which reduced the price of delivering an I/O opera­
tion, but these technologies were far more expensive when
it came to storage. It became impossible to provide the
best value dollar/GB and best value dollar/IOPS in the
same database technology and storage architecture.

➤	 The economics of various components of the technology
stack also increasingly demanded changes in core data­
base architectures. CPU and memory capacity increased
exponentially in accordance with Moore’s law, while net­
work and disk capacity increased geometrically at best. As
a result, it became increasingly more economical to move
processing to the data, rather than to move data to the pro­
cessing.

Each of these will be discussed in upcoming sections, but in
overview we are currently in an era in which several different
database technologies are employed for most moderately sized
businesses:

➤	 The relational system remains dominant as the underlying
storage system for traditional business systems—in-house
ERP and CRM. For instance, no non-relational system is
certified to support a SAP implementation and there is
little sign that this will change. However, as ERP and CRM
systems migrate to cloud-based SaaS alternatives, many
will be re-engineered and some may potentially adopt a
non-relational data store.

➤	 The relational database remains entrenched as the basis
for virtually all in-house data warehouses, and BI tools in
general only deliver their full functionality when working
against relational systems that support the full range of
ANSI SQL, including windowing functions, star schema
optimizations, bitmap indexes, and so on. Again, there is
some threat here from SQL-on-Hadoop, but for the most
part the real-time data warehouse remains the province of
the relational system.

➤	 Hadoop is increasingly deployed alongside the relational
data warehouse as a “data lake.” Hadoop serves as the stag­
ing area for data that has yet to find its way into a fixed-
schema DW and as a repository for fine-grained raw data
that may be the subject of data science projects.

➤	 Web applications—particularly those that in the past
would have been based on the LAMP (Linux, Apache,
MySQL & Perl/Python/PHP) stack—are increasing based
not on a relational system such as MySQL but on a non-
relational alternative such as MongoDB. These decisions
are largely being driven from the ground up as developers
decide on the NoSQL database in the absence of any cor­
porate mandate and in projects that adopt the DevOps
style of application development.

6
February 2015

➤	 In addition to the widespread use cases outlined above,
there are increasingly viable niches for “NewSQL” or oth­
erwise not-quite-relational database systems. These in­
clude columnar variations on the data warehouse such as
Vertica, in-memory systems such as Hana and VoltDB,
and graph-based databases such as Neo4J.

Figure 3. Modern enterprise data architectures combine multiple
technologies

Trend #2: Big Data and Hadoop
Every few years we seem to be subjected to a new buzzword

that so rapidly dominates all conversation as to become mean­
ingless. Many believe the term “big data”—seemingly added to
any conversation that in any way relates to data—has become
such a buzzword. But in reality, big data encompasses two very
real trends in modern data management:

➤	 We are required to store more, and more varied, data than
ever before.

➤	 The use of data has shifted in importance: analysis of data
used to be primarily about operational efficiency; in the
modern era it has become about competitive advantage.

The Data Revolution
While there are many arguably valid definitions of big data,

my personal favorite is the Industrial Revolution metaphor
coined by Joe Hellerstein at O’Reilly. Before the Industrial
Revolution in the 1800s, all goods were hand produced. Likewise,
before the industrial revolution of data, all data was produced by
hand: entered by individuals paid to do so by the organization.
Nowadays, of course, data comes in from everywhere: custom­
ers, social networks and, increasingly, Internet-enabled devices.

From a database point of view, this involves more than just
storing qualitatively more data. We are being called upon to
manage the storage of fast amounts of unstructured, unprocessed
data. In the past data was cleansed, schematized and aggregated
prior to being loaded into a data warehouse. This still occurs, but
we are also required to store the original, unadulterated raw data.
Why? Because often it’s the analysis of this original data that can
be used to unlock competitive advantage through advanced tech­
niques of data science.

Google and Hadoop
Undeniably, Google is the pre-eminent pioneer of big data.

From the very beginning, Google was faced with the challenge of
storing and analyzing exponentially increasing volumes of data,
and managing data that was inherently flexible and evolving in
format.

No existing database management system had either the ca­
pacity or capability of storing the volumes and varieties of data
that Google needed to master. So Google was forced to adopt its
own hardware and software stack for the purpose of building a
scalable commercial solution.

This stack involved many components but most notably in­
cluded the following building block technologies:

➤	 Google File System (GFS) is a distributed file system that
allows the directly attached storage in very large numbers
of commodity servers to be exposed as a single logical file
system.

➤	 Map Reduce is a programming model that allows complex
problems to be broken up into simple parallelized map
functions together with reduce functions that combine the
outputs from each parallel stream. Multiple Map Reduce
pipelines can be constructed to solve a very wide variety
of problems. While somewhat simplistic (at least com­
pared to modern alternatives) Map Reduce is an algorithm
that is applicable to a wide variety of problems.

➤	 Bigtable is a non-relational database system built on GFS.
It uses a normalized data model in which rows are associ­
ated with a variable, sparse, and potentially very large
number of columns, avoiding in many cases the need for
separate storage of detail records and for joins.

Google published details of the above three technologies dur­
ing the latter part of the last decade. Consequently, an open-
source project arose that implemented these and other key
components of the Google stack. This project is, of course,
Hadoop, which is arguably the most significant new database
storage system to be released in the last decade.

Hadoop was nurtured at Yahoo!, which allowed it to achieve
fairly rapidly the massive scalability for which it is well known. It
provides compelling advantages over relational systems for big
data storage:

➤	 It is significantly cheaper than all alternatives for storing
large amounts of data online. This is what Forrester calls
“Hadooponomics”: the ability to linearly scale data storage
and data-processing costs.

➤	 It supports the storage and processing of unstructured and
semi-structured data. There is no requirement to define the
schema of a data item for storing it in Hadoop. While this
undoubtedly leads to some degree of “Hadumping”—the
thoughtless dumping of all data without analysis—it obviates
the delay and cost involved with ETL into traditional stores.

➤	 Libraries of data science and advanced analysis exist for
Hadoop, providing data scientists with at least a starting
point for the analysis of data held in Hadoop.

Operational
RDBMS

(Oracle, SQL
Server, …)

In-memory
Analytics
(HANA,

Exalytics …)

In-memory
processing

(Spark)

Hadoop

Web DBMS
(MySQL,
Mongo,

Cassandra)

ERP & in-
house CRM

Analytic/BI
software

(SAS,
Tableau)

Web Server
Data

Warehouse
RDBMS

(Oracle,
Teradata …)

It takes all sorts

SQOOP
(RDBMS loader)

Hive
(Query)

Pig
(Scripting)

Flume
(Log Loader)

Oozie (Workflow manager)

Hadoop File System (HDFS)

Map Reduce /
YARN

Hbase
(Database)

Zookeeper
(Locking)

Figure 4. Simplified Hadoop stack

http://oreil.ly/1DDVVb1
http://bit.ly/1DE0IJy

7
The NoCOUG Journal

Today, Hadoop forms the background of most big data
projects.

Trend #3: Distributed Non-Relational Databases (a.k.a.
NoSQL)

Hadoop is an example of a non-relational database system.
However, while Hadoop arose because of pressures on analysis of
massive amounts of data, other non-relational systems were de­
veloped to meet other needs.

Traditionally, start-ups relied heavily on open-source software
stacks: Linux, Apache, and MySQL were the key components of
web start-ups such as Facebook and Twitter. However, as these
sites experienced rapid growth, it became increasingly difficult
to scale systems built on these foundations.

Means of scaling the web server are well established, but the
database presented different challenges. Some degree of relatively
easy scalability can be achieved by read offloading: using read only
replicas or distributed object cases such as Memcached. However,
at some point the master database becomes the bottleneck.

The most common solution to this dilemma is “sharding.” In
a sharded database, the largest tables are partitioned across mul­
tiple nodes. This partitioning is based on some key value, such as
a user ID. The application must be modified to know how to read
from the appropriate shard as well as typically integrating code to
handle memory-cached copies of data and the read-only replicas.

Although sharding succeeded as a solution and is still in use
in sites such as Facebook and Twitter, it is widely regarded as a
poor solution. A sharded database has lost almost all the charac­
teristics of a relational system: joins are not possibleand transac­
tional logic can no longer be expressed simply in SQL.

It has been recognized for some time that the requirements
of massive scalability and availability common to the biggest web
applications are inconsistent with the transactional model ex­
pressed in relational systems. This inconsistency is expressed in
the CAP (aka Brewer’s) theorem.

The CAP theorem states that you can only have two of these
three properties in a system:

➤	 Consistency: Everyone always sees the same version of all
data.

➤	 Availability: The system can remain available when nodes
fail.

➤	 Partition tolerance: The system can survive and remain
available when split in two by a network partition.

While a system such as Oracle RAC could provide high avail­
ability and strong consistency, a new model was needed for sys­
tems that would prefer to sacrifice strong consistency in order to
maintain availability across multiple data centers and geographies.

Amazon published their model for highly available data stor­
age in 2007, coining the term “Eventually Consistent” to describe
this model. Together with the Google Bigtable model discussed
earlier, these ideas inspired a variety of NoSQL databases to
emerge, including Hbase, Riak, DynamoDB, and Cassandra.

Non-relational systems were also influenced by object-orient­
ed and XML databases. Programmers have been frustrated for a
long time over the need to map program objects into relational
form. The so-called “impedance mismatch” between the two
models creates programmer overhead and hard-to-maintain
code. As a consequence of the emergence of JSON (JavaScript
Object Notation) as a widely used object document model in web

applications and the validation of non-relational systems, a num­
ber of JSON-based non-relational databases emerged, such as
MongoDB and Couchbase.

Today these non-relational systems—usually referred to as
NoSQL databases—are an increasingly common choice for back-
ending web applications.

Trend #4: Columnar Databases
The natural way that most of us think about data is to imagine

the data organized into horizontal rows and vertical columns—
the same way that we might enter the data on index cards, a
paper ledger, or Excel. This organization suited early database
systems as well, since most operations were on individual rows/
records: the well-known CRUD (Create, Read, Update, Delete)
pattern.

However, in data analysis it is rare to perform an analysis on
all the columns in a single row; rather, we tend to do operations
on all the rows in a single column. This shift toward column-
based processing created the opportunity for a new organiza­
tional model for data: the columnar storage model.

Figure 6. Row-oriented and column-oriented databases

In a column store, columns tend to be organized together on
disk rather than by clustering rows together on disk (Figure 6).
This has several notable advantages:

➤	 Aggregate operations such as SUM(), AVG(), etc., typi­
cally need to do less I/O, since all the data they need is
grouped together on disk.

➤	 Compression is improved, since there tends to be more
repetition across columns than across rows.

Consistency
• Everyone always sees

the same data

Availability
• System stays up

when nodes fail

Partition
Tolerance
• System stays up

when network
between nodes
fails

NO

GO

Most NoSQL lives
here

Figure 5. CAP (Brewer’s) theorem

ID Name DOB Salary Sales Expenses
1001 Dick 21/12/60 67,000 78980 3244

1002 Jane 12/12/55 55,000 67840 2333

1003 Robert 17/02/80 22,000 67890 6436

1004 Dan 15/03/75 65,200 98770 2345

1005 Steven 11/11/81 76,000 43240 3214

Block ID Name DOB Salary Sales Expenses

1 1001 Dick 21/12/60 67,000 78980 3244

2 1002 Jane 12/12/55 55,000 67840 2333

3 1003 Robert 17/02/80 22,000 67890 6436

4 1004 Dan 15/03/75 65,200 98770 2345

5 1005 Steven 11/11/81 76,000 43240 3214

Block

1 Dick Jane Robert Dan Steven

2 21/12/60 12/12/55 17/02/80 15/03/75 11/11/81

3 67,000 55,000 22,000 65,200 76,000

4 78980 67840 67890 98770 43240

5 3244 2333 6436 2345 3214

Row-oriented database

Column-oriented database

Dataset

8
February 2015

Figure 7. Delta store within a column store
Weighed against these advantages is, primarily, a reduction in

efficiency for typical OLTP operations. An insert, for instance,
must perform as many block operations as there are columns in
the row. Continual inserts effectively require continual reorgani­
zation of the column store, which is rarely practical. For this
reason, most column stores support the idea of a “delta store”: a
staging area that is row organized. Inserts build up in this delta
store and are periodically merged with the column store. In this
interim period, queries must access both the delta store and the
column store in order to retrieve up-to-date data.

Sybase IQ was one of the first commercial column-store data­
bases. Mike Stonebraker and his colleagues defined a theoretical
model for column stores called “C-store” that heavily influenced
the design of HP Vertica and other column-oriented systems.

Oracle uses column-oriented architecture within both
Exadata Hybrid Columnar Compression (EHCC) and Oracle
Database 12c In-Memory Option.

In EHCC, each block contains data for specific columns, but
all columns for a specific row are held within a single compres­
sion unit—typically a 1 MB structure. EHCC allows Oracle to get
the higher compression rates allowed for by columnar storage
while limiting impact on single-row operations, which can still
be satisfied by a single 1 MB I/O.

We’ll consider Oracle Database 12c In-Memory Option in the
next section.

Trend #5: The Demise of the Spinning Disk
The magnetic disk device has been a ubiquitous presence

within digital computing since the 1950s. The essential architec­

ture has changed very little over that time: one or more platters
contain magnetic charges that represent bits of information.
These magnetic charges are read and written by an actuator arm,
which moves across the disk to a specific position on the radius
of the platter and then waits for the platter to rotate to the ap­
propriate location.

The time taken to read an item of information is the sum of
the time taken to move the head into position (seek time), the
time taken to rotate the item into place (rotational latency), and
the time taken to transmit the item through the disk controller
(transfer time).

Figure 8 illustrates that while the size and density of these
devices have changed over the years, the architecture remains
virtually identical. While Moore’s law drives exponential growth
in CPU, memory, and disk density, it does not apply to the me­
chanical aspects of this performance; consequently, magnetic
disks have become an increasing drag on database performance
over the years.

The promise of solid-state disks has led some to anticipate a
day when all magnetic disks are replaced by solid-state disks.
While this might someday come to pass, in the short term the
economics of storage and the economics of I/O are at odds: mag­
netic disk technology provides a more economical medium per
unit of storage, while flash technology provides a more eco­
nomical medium for delivering high I/O rates and low latencies.

Figure 9. Economics of storage for solid-state and magnetic disk
technologies

Figure 9 illustrates the two competing trends: while the cost
of I/O is reduced with solid-state technology, the cost per TB
increases. Various flavors of SSD (PCI/SATA and MLC/SLC)
offer different price and performance characteristics in mag­
netic disks (15 K vs. 7 K RPM, for instance). The SSD devices
that offer good economies of I/O offer poorer economies for
mass storage. Of course, the cost per gigabyte for SSD is drop­
ping rapidly, but not faster than the falling cost of magnetic
disks or the growth in database storage demand—especially in
the era of big data.

Since most databases include both hot and cold data—small
amounts of frequently accessed data as well as large amounts of
idle data—most databases will experience the best economic
benefit by combining both solid-state and traditional magnetic
disk technologies. This is why Exadata combines both magnetic
disks and flash disks to achieve the ability to provide the optimal
balance between storage economics and performance. If Exadata
contained only magnetic disks, it could not provide superior

Read Optimized Store

• Columnar

• Disk-based

• Highly compressed

• Bulk loadable

Delta store

• Row oriented

• Uncompressed

• Single row inserts

Asynchronous merge

Bulk sequential loads

Continual parallel inserts

Merged

query

Figure 8. Disk devices over the years (Photo courtesy of Paul R.
Potts)

1.27

0.50

0.05

0.12

0.06

0.04

0.83

2.93

13.41

26.83

0.00 5.00 10.00 15.00 20.00 25.00 30.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Capacity HDD

Performance HDD

SATA SSD

MLC PCI SSD

PCI SLC SSD

Dollar/GB

Dollar/IO

Dollar/IOP

Dollar/GB

9
The NoCOUG Journal

OLTP performance; if it contained only SSD, it could not offer
compelling economical storage for large databases.

Moore’s law also continues to drive an increase in memory
capacity and decrease in memory cost. Many smaller databases
can now fit entirely within the memory capacity of a single
server, and certainly within the memory capacity of a cluster. For
these databases an in-memory solution may be even more attrac­
tive than a full SSD architecture.

However, these advantages can only be realized fully by a non-
traditional database architecture. Simply creating a massive buf­
fer case on top of an Oracle database, for instance, will not
provide benefits for all operations. Full table scans will still use
direct path reads to disk and checkpoints and redo operations
still need to run to a persistent storage layer.

Therefore databases that seek to be truly in memory typically
use different architectural patterns. For instance in Times 10,
data is guaranteed to always be in memory, and no user opera­
tion ever waits for disk I/O (although disks are still used to store
snapshots and transaction logs). By default, a commit writes
asynchronously to the transaction log, so that the user does not
wait on the IO. Strictly speaking this violates the ACID transac­
tion model, since a committed transaction could be lost if the
database failed before the data made it to disk.

HANA employs a mix of columnar and row-based storage,
and also requires persistent disks (often SSDs) for transaction log
and checkpoint writes.

One of the purest in-memory databases is VoltDB. VoltDB
uses a cluster of in-memory partitions that replicate data across
machines. During a commit, data is written to multiple ma­
chines, ensuring that data is not lost should there be a power
failure. This approach is called “K-safety.”

VoltDB also eliminates latch waits by allowing only a single
thread to access a partition at any moment. This is an interesting
aspect of in-memory systems, since when you eliminate I/O
waits you are likely to find that latch waits, which prevent simul­
taneous memory accesses, become the next logical bottleneck.

Oracle Database 12c In-Memory Option uses a combination
of columnar and in-memory approaches. Data is still held in the
traditional buffer cache and data files, but it can also be held in
an in-memory column format. As with other column stores,
there is a row store for deltas (the SMU) that buffers modifica­
tions.

Cloud: The Missing Trend?
It’s been true for several years that you can add the phrase “in

the cloud” to almost any technology marketing phrase to in­
crease its value. Since cloud is such a big trend, should “data­
bases in the cloud” or Database as a Service (DBaaS) be a key
database technology trend?

Possibly—in that I tend to believe that the database architec­
tures in the cloud are essentially driven by the database architec­
tures that we see on premise, especially those being pioneered in
the largest Web 2.0 companies. Furthermore, DBaaS uptake will
be slower than other cloud categories, due to some of the unique
characteristics of databases:

When the database is remote from the application it serves,
network latencies become a limiting performance factor that
cannot be overcome. A lot of work has gone into HTTP to make
it very responsive on web pages through things like staged ren­
dering and batching of request/reply packets; less work has gone

into shaping database server–application server network traffic
because it’s assumed that they are both on the same local area
network or on a dedicated interconnect.

For a similar reason—assumption that the application server
and database server are on a private network—the database com­
munication and authentication protocols are not as hardened as
in HTTPS. Data items may be transmitted in plain text, and au­
thentication is often restricted to one “super” account that can do
anything. Consequently, opening the database listener port to
the Internet potentially exposes the entire database to attack or
to successful data sniffing.

Data sovereignty and other considerations apply most strong­
ly to the database, so it’s probably the last element of your on-
premise servers to be moved to cloud.

None of this is to say that databases won’t move into the cloud
over time, but in my opinion they will follow applications into
the cloud rather than lead the way. s

Guy Harrison is an Oracle ACE and executive director of research
and development at Dell. He is the author of Oracle Performance
Survival Guide (Prentice Hall, 2009) and MySQL Stored Procedure
Programming (O’Reilly, with Steven Feuerstein) as well as other
books, articles, and presentations on database technology. He also
writes a monthly column for Database Trends and Applications
(www.dbta.com). He is co-author of the upcoming Oracle Exadata
Expert Handbook (Pearson, 2015). Guy can be found on the Inter
net at www.guyharrison.net and on e-mail at guy.harrison@
software.dell.com, and he is @guyharrison on Twitter.

Copyright © 2015, Guy Harrison

info@axxana.com • www.axxana.com

Axxana’s award winning Phoenix System
offering unprecedented Data Protection,
Cross-application consistency, Storage and

Replication agnostic.

SIMPLE!
DATABASE RECOVERY HAS NEVER BEEN SO

http://www.dbta.com
http://www.guyharrison.net

